

A Brief Guide to Getting the Most from This Book

1 Read the Book

Feature	Description
Section-Opening Scenarios	Every section opens with a scenario presenting a unique application of algebra in your life outside the classroom.
Detailed Worked-Out Examples	Examples are clearly written and provide step-by-step solutions. No steps are omitted, and each step is thoroughly explained to the right of the mathematics.
Applications Using	
Real-World Data	Interesting applications from nearly every discipline, supported by up-to-date real-world data, are included in every section.
Great Question!	Answers to students' questions offer suggestions for problem solving, point out common errors to avoid, and provide informal hints and suggestions.
Brief Reviews	NEW to this edition. Brief Reviews cover skills you already learned but may have forgotten.
Achieving Success	NEW to this edition. Achieving Success boxes offer strategies for persistence and success in college mathematics courses.
Explanatory Voice	Voice balloons help to demystify algebra. They translate mathematical language into plain English, clarify problem-solving procedures, and present alternative ways of understanding.
Balloons	Every section begins with a list of objectives. Each objective is restated in the margin where the objective is covered.
Tearning Objectives	The screens displayed in the technology boxes show how graphing utilities verify and visualize algebraic results.

2 Work the Problems

Feature

Check Point Examples

Concept and Vocabulary Checks

Extensive and Varied Exercise Sets

Practice Plus

Problems

Retaining the
Concepts

Preview Problems

Description

Each example is followed by a matched problem, called a Check Point, that offers you the opportunity to work a similar exercise. The answers to the Check Points are provided in the answer section.

These short-answer questions, mainly fill-in-the-blank and true/false items, assess your understanding of the definitions and concepts presented in each section.
An abundant collection of exercises is included in an Exercise Set at the end of each section. Exercises are organized within several categories. Your instructor will usually provide guidance on which exercises to work. The exercises in the first category, Practice Exercises, follow the same order as the section's worked examples.
This category of exercises contains more challenging problems that often require you to combine several skills or concepts.

NEW to this edition. Beginning with Chapter 2, each Exercise Set contains review exercises under the header "Retaining the Concepts."

Each Exercise Set concludes with three problems to help you prepare for the next section.

Benefit

Realizing that algebra is everywhere will help motivate your learning. (See page 106.)

The blue annotations will help you understand the solutions by providing the reason why every algebraic step is true.

(See page 111.)

Ever wondered how you'll use algebra? This feature will show you how algebra can solve real problems. (See page 265.)

By seeing common mistakes, you'll be able to avoid them. This feature should help you not to feel anxious or threatened when asking questions in class. (See page 109.)

Having these refresher boxes easily accessible will help ease anxiety about skills you may have forgotten. (See page 478.)

Follow these suggestions to help achieve your full academic potential in college mathematics. (See page 166.)

Does math ever look foreign to you? This feature often translates math into everyday English. (See page 201.)

The objectives focus your reading by emphasizing what is most important and where to find it. (See page 124.)

Even if you are not using a graphing utility in the course, this feature will help you understand different approaches to problem solving. (See page 110.)

Benefit

You learn best by doing. You'll solidify your understanding of worked examples if you try a similar problem right away to be sure you understand what you've just read. (See page 288.)

It is difficult to learn algebra without knowing its special language. These exercises test your understanding of the vocabulary and concepts. (See page 229.)
The parallel order of the Practice Exercises lets you refer to the worked examples and use them as models for solving these problems. (See page 406.)

It is important to dig in and develop your problem-solving skills. Practice Plus Exercises provide you with ample opportunity to

These exercises improve your understanding of the topics and help maintain mastery of the material. (See page 234.)

These exercises let you review previously covered material that you'll need to be successful for the forthcoming section. Some of these problems will get you thinking about concepts you'll soon encounter. (See page 312.)

do so. (See page 407.)

3 Review for Quizzes and Tests

Feature

Mid-Chapter Check Points

Chapter Review Grids

Chapter Review
Exercises

Chapter Tests

Chapter Test Prep Videos

Objective Videos

Cumulative Review Exercises

Description

At approximately the midway point in the chapter, an integrated set of review exercises allows you to review the skills and concepts you learned separately over several sections.

Each chapter contains a review chart that summarizes the definitions and concepts in every section of the chapter. Examples that illustrate these key concepts are also referenced in the chart.
A comprehensive collection of review exercises for each of the chapter's sections follows the grid.

Each chapter contains a practice test with approximately 25 problems that cover the important concepts in the chapter. Take the practice test, check your answers, and then watch the Chapter Test Prep Videos to see worked-out solutions for any exercises you miss.
These videos contain worked-out solutions to every exercise in each chapter test and can be found in MyMathLab and on YouTube.

NEW to this edition. These fresh, interactive videos walk you through the concepts from every objective of the text.
Beginning with Chapter 2, each chapter concludes with a comprehensive collection of mixed cumulative review exercises. These exercises combine problems from previous chapters and the present chapter, providing an ongoing cumulative review.

Benefit

By combining exercises from the first half of the chapter, the Mid-Chapter Check Points give a comprehensive review before you move on to the material in the remainder of the chapter. (See page 281.)
Review this chart and you'll know the most important material in the chapter! (See page 454.)

Practice makes perfect. These exercises contain the most significant problems for each of the chapter's sections.

(See page 209.)

You can use the chapter test to determine whether you have mastered the material covered in the chapter.

(See page 213.)

The videos let you review any exercises you miss on the chapter test.

The videos provide you with active learning at your own pace.

Ever forget what you've learned? These exercises ensure that you are not forgetting anything as you move forward. (See page 461.)

COLLEGE ALGEBRA

This page intentionally left blank

COLLEGE ALGEBRA

Robert Blitzer
Miami Dade College

Director, Portfolio Management: Anne Kelly	Executive Marketing Manager: Peggy Lucas
Courseware Portfolio Manager: Dawn Murrin	Marketing Assistant: Adiranna Valencia
Portfolio Management Administrator: Joseph Colella	Senior Author Support/Technology Specialist: Joe Vetere
Content Producer: Kathleen A. Manley	Production Coordination: Francesca Monaco/codeMantra
Managing Producer: Karen Wernholm	Text Design and Composition: codeMantra
Producer: Erica Lange	Illustrations: Scientific Illustrators
Manager, Courseware QA: Mary Durnwald	Photo Research and Permission Clearance: Cenveo Publisher Services
Manager, Content Development: Kristina Evans	Cover Design: Studio Montage
Product Marketing Manager: Jennifer Edwards	Cover Image: Dream Master/Shutterstock

Copyright © 2018, 2014, 2010 Pearson Education, Inc. All Rights Reserved. Printed in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights \& Permissions department, please visit www.pearsoned.com/permissions/.

Acknowledgments of third-party content appear on page C 1 , which constitutes an extension of this copyright page.

PEARSON, ALWAYS LEARNING, and MYMATHLAB are exclusive trademarks owned by Pearson Education, Inc. or its affiliates in the U.S. and/or other countries.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson's products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc. or its affiliates, authors, licensees or distributors.

Library of Congress Cataloging-in-Publication Data
Names: Blitzer, Robert.
Title: College algebra / Robert Blitzer, Miami Dade College.
Description: Seventh edition. | Hoboken, NJ : Pearson, [2018] | Includes index.
Identifiers: LCCN 2016030693 | ISBN 9780134469164
Subjects: LCSH: Algebra - Textbooks.
Classification: LCC QA152.3.B642 2018 | DDC 512.9 - dc23
LC record available at https://lccn.loc.gov/2016030693

CONTENTS

Preface ix
To the Student xvii
About the Author xviil
Applications Index xix
Prerequisites: Fundamental Concepts of Algebra 1
P. 1 Algebraic Expressions, MathematicalModels, and Real Numbers 2
P. 2 Exponents and Scientific Notation 20
P. 3 Radicals and Rational Exponents 35
P. 4 Polynomials 51
Mid-Chapter Check Point 63
P. 5 Factoring Polynomials 64
P. 6 Rational Expressions 76
Summary, Review, and Test 89
Review Exercises 90
Chapter P Test 92
1 Equations and Inequalities 93
1.1 Graphs and Graphing Utilities 94
1.2 Linear Equations and Rational Equations 106
1.3 Models and Applications 124
1.4 Complex Numbers 139
1.5 Quadratic Equations 148
Mid-Chapter Check Point 171
1.6 Other Types of Equations 173
1.7 Linear Inequalities and Absolute Value Inequalities 189
Summary, Review, and Test 206
Review Exercises 209
Chapter 1 Test 213

4 Exponential and Logarithmic Functions 463
4.1 Exponential Functions 464
4.2 Logarithmic Functions 478
4.3 Properties of Logarithms 493
Mid-Chapter Check Point 503
4.4 Exponential and Logarithmic Equations 504
4.5 Exponential Growth and Decay; Modeling Data 519
Summary, Review, and Test 533
Review Exercises 535
Chapter 4 Test 539
Cumulative Review Exercises (Chapters 1-4) 540

5
 Systems of Equations and Inequalities 541

5.1 Systems of Linear Equations in Two Variables 542
5.2 Systems of Linear Equations in Three Variables 561
5.3 Partial Fractions 569
5.4 Systems of Nonlinear Equations in Two Variables 580
Mid-Chapter Check Point 590
5.5 Systems of Inequalities 591
5.6 Linear Programming 60 603
Summary, Review, and Test 611
Review Exercises 613
Chapter 5 Test 6 616
Cumulative Review Exercises (Chapters 1-5) 616
6 Matrices and Determinants 619
6.1 Matrix Solutions to Linear Systems 620
6.2 Inconsistent and Dependent Systemsand Their Applications634
6.3 Matrix Operations and Their Applications 643
Mid-Chapter Check Point 658
6.4 Multiplicative Inverses of Matrices and Matrix Equations 659
6.5 Determinants and Cramer's Rule 673
Summary, Review, and Test 686
Review Exercises 687
Chapter 6 Test 689

7
 Conic Sections 691

7.1 The Ellipse 692
7.2 The Hyperbola 707
Mid-Chapter Check Point 722
7.3 The Parabola 723
Summary, Review, and Test 737
Review Exercises 739
Chapter 7 Test 74
Cumulative Review Exercises (Chapters 1-7) 741

Q Sequences, Induction, and Probability 743

8.1 Sequences and Summation Notation 744
8.2 Arithmetic Sequences 755
8.3 Geometric Sequences and Series 766
Mid-Chapter Check Point 781
8.4 Mathematical Induction 782
8.5 The Binomial Theorem 791
8.6 Counting Principles, Permutations,and Combinations 799
8.7 Probability 810
Summary, Review, and Test 825
Review Exercises 827
Chapter 8 Test 830
Cumulative Review Exercises (Chapters 1-8) 83
Appendix: Where Did That Come From? Selected Proofs 833
Answers to Selected Exercises AA1
Subject Index I1

PREFACE

I've written College Algebra, Seventh Edition, to help diverse students, with different backgrounds and future goals, to succeed. The book has three fundamental goals:

1. To help students acquire a solid foundation in algebra, preparing them for other courses such as calculus, business calculus, and finite mathematics.
2. To show students how algebra can model and solve authentic real-world problems.
3. To enable students to develop problem-solving skills, while fostering critical thinking, within an interesting setting.
One major obstacle in the way of achieving these goals is the fact that very few students actually read their textbook. This has been a regular source of frustration for me and for my colleagues in the classroom. Anecdotal evidence gathered over years highlights two basic reasons that students do not take advantage of their textbook:

- "I'll never use this information."
- "I can't follow the explanations."

I've written every page of the Seventh Edition with the intent of eliminating these two objections. The ideas and tools I've used to do so are described for the student in "A Brief Guide to Getting the Most from This Book," which appears at the front of the book.

What's New in the Seventh Edition?

- New Applications and Real-World Data. The Seventh Edition contains 63 worked-out examples and exercises based on new data sets, and 36 examples and exercises based on data updated from the Sixth Edition. Many of the new applications involve topics relevant to college students, including student-loan debt (Chapter P, Mid-Chapter Check Point, Exercise 31), grade inflation (Exercise Set 1.2, Exercises 97-98), median earnings, by final degree earned (Exercise Set 1.3, Exercises 3-4), excuses for not meeting deadlines (Chapter 1 Summary, Exercise 36), political orientation of college freshmen (Chapter 2 Summary, Exercise 53), sleep hours of college students (Exercise Set 5.1, Exercise 74), and the number of hours college students study per week, by major (Exercise Set 5.2, Exercises 33-34).
- Brief Reviews. Beginning with Chapter 1, the Brief Review boxes that appear throughout the book summarize mathematical skills, many of which are course prerequisites, that students have learned, but which many students need to review. This feature appears whenever a particular skill is first needed and eliminates the need for you to reteach that skill. For more detail, students are referred to the appropriate section and objective in a previous chapter where the topic is fully developed.
- Achieving Success. The Achieving Success boxes, appearing at the end of many sections in Chapters 1 through 5, offer strategies for persistence and success in college mathematics courses.
- Retaining the Concepts. Beginning with Chapter 2, Section 2.1, each Exercise Set contains three review exercises under the header "Retaining the Concepts." These exercises are intended for students to review previously covered objectives in order to improve their understanding of the topics and to help maintain their mastery of the material. If students are not certain how to solve a review exercise, they can turn to the section and worked example given in parentheses at the end of each exercise. The Seventh Edition contains 78 new exercises in the "Retaining the Concepts" category.
- New Blitzer Bonus Videos with Assessment. Many of the Blitzer Bonus features throughout the textbook have been turned into animated videos that are built into the MyMathLab course. These videos help students make visual connections to algebra and the world around them. Assignable exercises have been created within the MyMathLab course to assess conceptual understanding and mastery. These videos and exercises can be turned into a media assignment within the Blitzer MyMathLab course.
- Updated Learning Guide. Organized by the textbook's learning objectives, this updated Learning Guide helps students learn how to make the most of their textbook for test preparation. Projects are now included to give students an opportunity to discover and reinforce the concepts in an active learning environment and are ideal for group work in class.
- Updated Graphing Calculator Screens. All screens have been updated using the TI-84 Plus C.

What Content and Organizational Changes Have Been Made to the Seventh Edition?

- Section P. 1 (Algebraic Expressions, Mathematical Models, and Real Numbers) follows an example on the cost of attending college (Example 2) with a new Blitzer Bonus,"Is College Worthwhile?"
- Section P. 6 (Rational Expressions) uses the least common denominator to combine rational expressions with different denominators, including expressions having no common factors in their denominators.
- Section 1.1 (Graphing and Graphing Utilities) contains a new example of a graph with more than one x-intercept (Example 5(d)).
- Section 1.4 (Complex Numbers) includes a new example on dividing complex numbers where the numerator is of the form $b i$ (Example 3). (This is then followed by an example picked up from the Sixth Edition where the numerator is of the form $a+b i$.)
- Section 1.5 (Quadratic Equations) provides a step-by-step procedure for solving quadratic equations by completing the square. This procedure forms the framework for the solutions in Examples 4 and 5.
- Section 1.5 (Quadratic Equations) contains an example on the quadratic formula (Example 6) where the formula is used to solve a quadratic equation with rational solutions, an equation that students can also solve by factoring.
- Section 1.5 (Quadratic Equations) has a new application of the Pythagorean Theorem (Example 11) involving HDTV screens. The example is followed by a new Blitzer Bonus, "Screen Math."
- Section 1.6 (Other Types of Equations) includes an example on solving an equation quadratic in form (Example 8),

$$
\left(x^{2}-5\right)^{2}+3\left(x^{2}-5\right)-10=0
$$

where u is a binomial $\left(u=x^{2}-5\right)$.

- Section 2.2 (More on Functions and Their Graphs) contains a new discussion on graphs with three forms of symmetry (Examples 2 and 3) before presenting even and odd functions. A new example (Example 4) addresses identifying even or odd functions from graphs.
- Section 2.3 (Linear Functions and Slope) includes a new Blitzer Bonus, "Slope and Applauding Together."
- Section 2.7 (Inverse Functions) replaces an example on finding the inverse of $f(x)=\frac{5}{x}+4$ with an example on finding the inverse of $f(x)=\frac{x+2}{x-3}$ (Example 4), a function with two occurrences of x.
- Section 3.5 (Rational Functions and Their Graphs) opens with a discussion of college students and video games. This is revisited in a new example (Example 9, "Putting the Video-Game Player Inside the Game") involving the Oculus Rift, a virtual reality headset that enables users to experience video games as immersive three-dimensional environments.
- Section 5.1 (Systems of Linear Equations in Two Variables) contains a new discussion on problems involving mixtures, important for many STEM students. A new example (Example 8) illustrates the procedure for solving a mixture problem.
- Section 6.1 (Matrix Solutions to Linear Systems) has a new opening example (Example 1) showing the details on how to write an augmented matrix.
- Section 7.1 (The Ellipse) includes a new example (Example 5) showing the details on graphing an ellipse centered at (h, k) by completing the square.
- Section 7.3 (The Parabola) adds a new objective on identifying conics of the form $A x^{2}+C y^{2}+D x+E y+F=0$ without completing the square, supported by an example (Example 7).
- Section 8.2 (Arithmetic Sequences) contains a new example (Example 3) on writing the general term of an arithmetic sequence.
- Section 8.7 (Probability) uses the popular lottery games Powerball (Example 5) and Mega Millions (Exercises 27-30) as applications of probability and combinations.

What Familiar Features Have Been Retained in the Seventh Edition?

- Learning Objectives. Learning objectives, framed in the context of a student question (What am I supposed to learn?), are clearly stated at the beginning of each section. These objectives help students recognize and focus on the section's most important ideas. The objectives are restated in the margin at their point of use.
- Chapter-Opening and Section-Opening Scenarios.

Every chapter and every section open with a scenario presenting a unique application of mathematics in students' lives outside the classroom. These scenarios are revisited in the course of the chapter or section in an example, discussion, or exercise.

- Innovative Applications. A wide variety of interesting applications, supported by up-to-date, real-world data, are included in every section.
- Detailed Worked-Out Examples. Each example is titled, making the purpose of the example clear. Examples are clearly written and provide students with detailed step-by-step solutions. No steps are omitted and each step is thoroughly explained to the right of the mathematics.
- Explanatory Voice Balloons. Voice balloons are used in a variety of ways to demystify mathematics. They translate algebraic ideas into everyday English, help clarify problem-solving procedures, present alternative ways of understanding concepts, and connect problem solving to concepts students have already learned.
- Check Point Examples. Each example is followed by a similar matched problem, called a Check Point, offering students the opportunity to test their understanding of the example by working a similar exercise. The answers to the Check Points are provided in the answer section.
- Concept and Vocabulary Checks. This feature offers short-answer exercises, mainly fill-in-the-blank and true/false items, that assess students' understanding of the definitions and concepts presented in each section. The Concept and Vocabulary Checks appear as separate features preceding the Exercise Sets.
- Extensive and Varied Exercise Sets. An abundant collection of exercises is included in an Exercise Set at the end of each section. Exercises are organized within nine category types: Practice Exercises, Practice Plus Exercises, Application Exercises, Explaining the Concepts, Technology Exercises, Critical Thinking Exercises, Group Exercises, Retaining the Concepts, and Preview Exercises. This format makes it easy to create well-rounded homework assignments. The order of the Practice Exercises is exactly the same as the order of the section's worked examples. This parallel order enables students to refer to the titled examples and their detailed explanations to achieve success working the Practice Exercises.
- Practice Plus Problems. This category of exercises contains more challenging practice problems that often require students to combine several skills or concepts. With an average of ten Practice Plus problems per Exercise Set, instructors are provided with the option of creating assignments that take Practice Exercises to a more challenging level.
- Mid-Chapter Check Points. At approximately the midway point in each chapter, an integrated set of Review Exercises allows students to review and assimilate the skills and concepts they learned separately over several sections.
- Graphing and Functions. Graphing is introduced in Chapter 1 and functions are introduced in Chapter 2, with an integrated graphing functional approach emphasized throughout the book. Graphs and functions that model data appear in nearly every section and Exercise Set. Examples and exercises use graphs of functions to explore relationships between data and to provide ways of visualizing a problem's solution. Because functions are the core of this course, students are repeatedly shown how functions relate to equations and graphs.
- Integration of Technology Using Graphic and Numerical Approaches to Problems. Side-by-side features in the technology boxes connect algebraic solutions to graphic and numerical approaches to problems. Although the use of graphing utilities is optional, students can use the explanatory voice balloons to understand different approaches to problems even if they are not using a graphing utility in the course.
- Great Question! This feature presents a variety of study tips in the context of students' questions. Answers to questions offer suggestions for problem solving, point out common errors to avoid, and provide informal hints and suggestions. As a secondary benefit, this feature should help students not to feel anxious or threatened when asking questions in class.
- Chapter Summaries. Each chapter contains a review chart that summarizes the definitions and concepts in every section of the chapter. Examples that illustrate these key concepts are also referenced in the chart.
- End-of-Chapter Materials. A comprehensive collection of Review Exercises for each of the chapter's sections follows the Summary. This is followed by a Chapter Test that enables students to test their understanding of the material covered in the chapter. Beginning with Chapter 2, each chapter concludes with a comprehensive collection of mixed Cumulative Review Exercises.
- Blitzer Bonuses. These enrichment essays provide historical, interdisciplinary, and otherwise interesting connections to the algebra under study, showing students that math is an interesting and dynamic discipline.
- Discovery. Discovery boxes, found throughout the text, encourage students to further explore algebraic concepts. These explorations are optional and their omission does not interfere with the continuity of the topic under consideration.
I hope that my passion for teaching, as well as my respect for the diversity of students I have taught and learned from over the years, is apparent throughout this new edition. By connecting algebra to the whole spectrum of learning, it is my intent to show students that their world is profoundly mathematical, and indeed, π is in the sky.

Acknowledgments

An enormous benefit of authoring a successful series is the broad-based feedback I receive from the students, dedicated users, and reviewers. Every change to this edition is the result of their thoughtful comments and suggestions. I would like to express my appreciation to all the reviewers, whose collective insights form the backbone of this revision. In particular, I would like to thank the following people for reviewing College Algebra, Algebra and Trigonometry, Precalculus, and Trigonometry.
Karol Albus, South Plains College
Kayoko Yates Barnhill, Clark College
Timothy Beaver, Isothermal Community College Jaromir Becan, University of Texas-San Antonio
Imad Benjelloun, Delaware Valley College
Lloyd Best, Pacific Union College
David Bramlett, Jackson State University
Natasha Brewley-Corbin, Georgia Gwinnett College
Denise Brown, Collin College-Spring Creek Campus
David Britz, Raritan Valley Community College
Bill Burgin, Gaston College
Jennifer Cabaniss, Central Texas College
Jimmy Chang, St. Petersburg College
Teresa Chasing Hawk, University of South Dakota
Diana Colt, University of Minnesota-Duluth
Shannon Cornell, Amarillo College
Wendy Davidson, Georgia Perimeter College-Newton
Donna Densmore, Bossier Parish Community College
Disa Enegren, Rose State College
Keith A. Erickson, Georgia Gwinnett College
Nancy Fisher, University of Alabama
Donna Gerken, Miami Dade College
Cynthia Glickman, Community College of Southern Nevada
Sudhir Kumar Goel, Valdosta State University
Donald Gordon, Manatee Community College
David L. Gross, University of Connecticut
Jason W. Groves, South Plains College
Joel K. Haack, University of Northern Iowa
Jeremy Haefner, University of Colorado
Joyce Hague, University of Wisconsin at River Falls
Mike Hall, University of Mississippi
Mahshid Hassani, Hillsborough Community College
Tom Hayes, Montana State University
Christopher N. Hay-Jahans, University of South Dakota Angela Heiden, St. Clair Community College
Celeste Hernandez, Richland College

Alysmarie Hodges, Eastfield College
Amanda Hood, Copiah-Lincoln Community College
Jo Beth Horney, South Plains College
Heidi Howard, Florida State College at Jacksonville-South Campus
Winfield A. Ihlow, SUNY College at Oswego
Nancy Raye Johnson, Manatee Community College Dennine Larue, Fairmont State University Mary Leesburg, Manatee Community College Christine Heinecke Lehman, Purdue University North Central
Alexander Levichev, Boston University
Zongzhu Lin, Kansas State University
Benjamin Marlin, Northwestern Oklahoma State University
Marilyn Massey, Collin County Community College
Yvelyne McCarthy-Germaine, University of New Orleans
David McMann, Eastfield College
Owen Mertens, Missouri State University-Springfield
James Miller, West Virginia University
Martha Nega, Georgia Perimeter College-Decatur
Shahla Peterman, University of Missouri-St. Louis
Debra A. Pharo, Northwestern Michigan College
Gloria Phoenix, North Carolina Agricultural and Technical State University
Katherine Pinzon, Georgia Gwinnett College
David Platt, Front Range Community College
Juha Pohjanpelto, Oregon State University
Brooke Quinlan, Hillsborough Community College
Janice Rech, University of Nebraska at Omaha
Joseph W. Rody, Arizona State University
Behnaz Rouhani, Georgia Perimeter College-Dunwoody
Judith Salmon, Fitchburg State University
Michael Schramm, Indian River State College
Cynthia Schultz, Illinois Valley Community College
Pat Shelton, North Carolina Agricultural and Technical State University
Jed Soifer, Atlantic Cape Community College
Caroline Spillman, Georgia Perimeter College-Clarkston
Jonathan Stadler, Capital University
Franotis R. Stallworth, Gwinnett Technical College
John David Stark, Central Alabama Community College
Chris Stump, Bethel College
Scott Sykes, University of West Georgia
Richard Townsend, North Carolina Central University

Pamela Trim, Southwest Tennessee Community College

Chris Turner, Arkansas State University

Richard E. Van Lommel, California State University-Sacramento
Dan Van Peursem, University of South Dakota
Philip Van Veldhuizen, University of Nevada at Reno
Jeffrey Weaver, Baton Rouge Community College
Amanda Wheeler, Amarillo College
David White, The Victoria College
Tracy Wienckowski, University of Buffalo
Additional acknowledgments are extended to Dan Miller and Kelly Barber for preparing the solutions manuals; Brad Davis for preparing the answer section, serving
as accuracy checker, and writing the new learning guide; the codeMantra formatting team for the book's brilliant paging; Brian Morris and Kevin Morris at Scientific Illustrators for superbly illustrating the book; Francesca Monaco, project manager; and Kathleen Manley, production editor, whose collective talents kept every aspect of this complex project moving through its many stages.

I would like to thank my editor at Pearson, Dawn Murrin, who, with the assistance of Joseph Colella, guided and coordinated the book from manuscript through production. Finally, thanks to Peggy Lucas and Jennifer Edwards for their innovative marketing efforts and to the entire Pearson sales force for their confidence and enthusiasm about the book.

Get the Most Out of MyMathLabintm|"

MyMathLab is the leading online homework, tutorial, and assessment program for teaching and learning mathematics, built around Pearson's best-selling content. MyMathLab helps students and instructors improve results; it provides engaging experiences and personalized learning for each student so learning can happen in any environment. Plus, it offers flexible and time-saving course management features to allow instructors to easily manage their classes while remaining in complete control, regardless of course format.

Preparedness

MyMathLab course solutions offer a complete College Algebra or Precalculus course with integrated review of select topics from developmental algebra. These courses help remediate students "just-in-time" and help with student retention of important concepts, ultimately boosting student success.

- Students begin each chapter by completing a Skills Check assignment to pinpoint which developmental topics, if any, they need to review.
- Students who demonstrate mastery of the review topics will move straight into the College Algebra content.
- A personalized review homework assignment will provide extra support for the students who need it.
- Additional review materials (worksheets, videos, and more) are available in an Integrated Review section at the start of each chapter in MyMathLab.

MyMathLab with Integrated Review are appropriate for students who struggle with pre-requisite skills and for co-requisite course models. These Integrated Review MyMathLab courses are available for a variety of College Algebra and Precalculus programs, as well as a variety of other disciplines.

Used by more than 37 million students worldwide, MyMathLab delivers consistent, measurable gains in student learning outcomes, retention, and subsequent course success.

MyMathLab Online Course for College Algebra by Robert Blitzer

（access code required）

NEW！Video Program
These fresh，interactive videos walk you through the concepts from every objective of the text．The videos provide an active learning environment where students can work at their own pace．

Your Turn！

Choose the option that best answers the question．

Perform the indicated operation，writing the result in standard form：

$$
(-4-8 i)-(-7+2 i)
$$

a．$-3-10 i$
b．$-11-6 i$
c．$-11+6 i$

NEW！Workspace Assignments

Students can now show their work like never before！ Workspace Assignments allow students to work through an exercise step－by－step，and show their mathematical reasoning as they progress．Students receive immediate feedback after they complete each step，and helpful hints and videos offer guidance when they need it．When accessed via a mobile device，Workspace exercises use handwriting recognition software that allows students to naturally write out their answers．Each student＇s work is automatically graded and captured in the MyMathLab gradebook so instructors can easily pinpoint exactly where they need to focus their instruction．

NEW！Guided Visualizations

These HTML－based，interactive figures help students visualize the concepts through directed explorations and purposeful manipulation．They encourage active learning，critical thinking，and conceptual learning． They are compatible with iPad and tablet devices．
The Guided Visualizations are located in the Multimedia Library and can be assigned as homework with correlating assessment exercises． Additional Exploratory Exercises are available to help students think more conceptually about the figures and provide an excellent framework for group projects or lecture discussion．
＜ 9.4 Complex Solutions of Quadratic Equations－Addition and Subtraction of Co 1．Evaluate $(6+7 i)+(4-9 i)$ ．
$0=(6+(7 \times i))+(4-(9 \times i))$

Resources for Success

Instructor Resources

Additional resources can be downloaded from www.mymathlab.com or www.pearsonhighered.com or hardcopy resources can be ordered from your sales representative.

Annotated Instructor's Edition

Shorter answers are on the page beside the exercises. Longer answers are in the back of the text.

Instructor's Solutions Manual

Fully worked solutions to all textbook exercises.

PowerPoint ${ }^{\circledR}$ Lecture Slides

Fully editable lecture slides that correlate to the textbook.

Mini Lecture Notes

Additional examples and helpful teaching tips for each section.

TestGen®

Enables instructors to build, edit, print, and administer tests using a computerized bank of algorithmic questions developed to cover all the objectives of the text.

Student Resources

Additional resources to help student success are available to be packaged with the Blitzer textbook and MyMathLab access code.

Objective Level Videos

These fresh, interactive videos walk students through the concepts from every objective of the text. The videos provide an active learning environment where students can work at their own pace.

Chapter Test Prep Videos

Students can watch instructors work through step-by-step solutions to all the Chapter Test exercises from the textbook. These are available in
 MyMathLab and on YouTube.

Student Solutions Manual

Fully worked solutions to odd-numbered exercises and available to be packaged with the textbook.

Learning Guide

This note-taking guide is organized by objective and begins each chapter with an engaging application, providing additional examples and exercises for students to work through for a greater conceptual understanding and mastery of mathematical topics. New to this edition: classroom projects are included with each chapter providing students the opportunity to work collaboratively for stronger conceptual understanding. The Learning Guide is available in PDF and customizable Word file formats in MyMathLab. It can also be packaged with the textbook and MyMathLab access code.

MathTalk Videos

Engaging videos connect mathematics to real-life events and interesting applications. These fun, instructional videos show students that math is relevant to their daily lives and are assignable in MyMathLab. Assignable exercises are available in MyMathLab for these videos to help students retain valuable information presented in the videos.

TO THE STUDENT

The bar graph shows some of the qualities that students say make a great teacher. It was my goal to incorporate each of these qualities throughout the pages of this book.

Explains Things Clearly

I understand that your primary purpose in reading College Algebra is to acquire a solid understanding of the required topics in your algebra course. In order to achieve this goal, I've carefully explained each topic. Important definitions and procedures are set off in boxes, and worked-out examples that present solutions in a step-by-step manner appear in every section. Each example is followed by a similar matched problem, called a Check Point, for you to try so that you can actively participate in the learning process as you read the book. (Answers to all Check Points appear in the back of the book.)

Funny \& Entertaining

Who says that an algebra textbook can't be entertaining? From our unusual cover to the photos in the chapter and section openers, prepare to expect the unexpected. I hope some of the book's enrichment essays, called Blitzer Bonuses, will put a smile on your face from time to time.

Helpful

I designed the book's features to help you acquire knowledge of college algebra, as well as to show you how algebra can solve authentic problems that apply to your life. These helpful features include:

- Explanatory Voice Balloons: Voice balloons are used in a variety of ways to make math less intimidating. They translate algebraic language into everyday English, help clarify problem-solving procedures, present alternative ways of understanding concepts, and connect new concepts to concepts you have already learned.
- Great Question!: The book's Great Question! boxes are based on questions students ask in class. The answers to these questions give suggestions for problem solving, point out common errors to avoid, and provide informal hints and suggestions.
- Achieving Success: The book's Achieving Success boxes give you helpful strategies for success in learning algebra, as well as suggestions that can be applied for achieving your full academic potential in future college coursework.
- Chapter Summaries: Each chapter contains a review chart that summarizes the definitions and concepts in every section of the chapter. Examples from the chapter that illustrate these key concepts are also referenced in the chart. Review these summaries and you'll know the most important material in the chapter!

Passionate about the Subject

I passionately believe that no other discipline comes close to math in offering a more extensive set of tools for application and development of your mind. I wrote the book in Point Reyes National Seashore, 40 miles north of San Francisco. The park consists of 75,000 acres with miles of pristine surf-washed beaches, forested ridges, and bays bordered by white cliffs. It was my hope to convey the beauty and excitement of mathematics using nature's unspoiled beauty as a source of inspiration and creativity. Enjoy the pages that follow as you empower yourself with the algebra needed to succeed in college, your career, and your life.

Regards,

ABOUT THE AUTHOR

Bob Blitzer is a native of Manhattan and received a Bachelor of Arts degree with dual majors in mathematics and psychology (minor: English literature) from the City College of New York. His unusual combination of academic interests led him toward a Master of Arts in mathematics from the University of Miami and a doctorate in behavioral sciences from Nova University. Bob's love for teaching mathematics was nourished for nearly 30 years at Miami Dade College, where he received numerous teaching awards, including Innovator of the Year from the League for Innovations in the Community College and an endowed chair based on excellence in the classroom. In addition to College Algebra, Bob has written textbooks covering developmental mathematics, introductory algebra, intermediate
 algebra, trigonometry, algebra and trigonometry, precalculus, and liberal arts mathematics, all published by Pearson. When not secluded in his Northern California writer's cabin, Bob can be found hiking the beaches and trails of Point Reyes National Seashore and tending to the chores required by his beloved entourage of horses, chickens, and irritable roosters.

APPLICATIONS INDEX

A

Accidents, automobile
age of driver and, 169, 689
alcohol use and, 511-512, 517, 825
Acid rain, 517
Actor selection, 808, 829
Adulthood, transition to, 657
Adult residential community costs, 755, 762
Advertising
online spending, 832
sales and price and, 449-450, 454
African Americans
cigarette consumption, 613
percentage with high school diploma, 538
African life span, AIDS and, 568 Age(s)
accidents per day and, 689
arrests and drunk driving as function of, 430
average number of awakenings during night by, 104
body-mass index and, 602
calories needed to maintain energy by, 88
chances of surviving to various, 233
fatal crashes and, 169
height as function of, 275, 278, 296
marriage and, 100-101, 138, 339
perceived length of time period and, 453
percentage of U.S. population never married, ages 25-29, 268, 270
percent body fat in adults by, 253
preferred age in a mate, 322-323
racial prejudice and, 61-62
systolic blood pressure and, 163-164
weight of human fetus and, 211
Aging rate, space travel and, 35, 47, 50
AIDS. See also HIV infection
African life span and, 568
cases diagnosed (U.S.), 364-366, 368
Airplanes
line up for departure on runway, 829
weight/volume constraints, 605 Alcohol use
and accident risk, 511-512, 517, 825
drunk driving arrests, 430
moderate wine consumption and heart disease, 269-270
number of moderate users in U.S., 538
by U.S. high school seniors, 104

Alligator(s)
population of, 172
tail length given body length, 452
Altitude and atmospheric pressure, 537
Amazon deforestation, 457
American Idol, ratings of, 362
Annuities, 772-774, 779, 829
Apogee/perigee of satellite's orbit, 706
Applause, decibel level of, 257
Arch bridge, 730, 739
Archer's arrow, path of, 356
Architecture, conic sections in, 707, 717
Archway
parabolic, and boat clearance, 736
semi-elliptical, truck clearance under, 702-703, 705, 722, 739
Area
maximum, $358,361,410,457$
of plane figure, 63
of shaded region, 62,75
of triangle, 684
Area code possibilities, 807
Arrests, drunk driving, 430
Artists in documentary, 803-804
Aspirin, half-life of, 530, 722
Asteroid detection, 580
Atmospheric pressure and altitude, 537
Automobiles
accidents per day, age of driver and, 689
alcohol use and accident risk, 511-512, 517, 825
annual price increases of, 136
average age, on U.S. roads, 136
depreciation, 136, 233
drunk driving arrests as function of age, 430
fatal accidents and driver's age, 169
possible race finishes, 808
purchase options, 807
rentals, 189-190, 200-201, 212, 430
repair estimates for, 205
required stopping distance, 431, 441-442
stopping distances, 431, 441-442
traffic control, 634, 638-643, 688
value over time, 754
Average cost function, 424-425, 428, 458, 461
Average rate of change, 275-276, 296

B
Ball, thrown upward and outward, 361

Ball's height above ground baseball, 540
bounce height, 452
football, 17, 354-355, 456, 632
maximum height, 456
when thrown across field, 569
when thrown from rooftop, 441, 567
when thrown from top of building, 832
when thrown from top of Leaning Tower of Pisa, 439
when thrown straight up, 632
Bank and credit union charges, 205
Banking angle and turning radius of bicycle, 452
Baseball
contract, 743, 778
diamond diagonal length, 169
height of ball above ground, 540
Little League team batting order, 801-802
Basketball, hang time in air when shooting, 187
Basketball court, dimensions of, 133
Bass in lake over time, 458
Beauty
changes in cultural values of, 541
symmetry and, 238
Benefit concert lineup possibilities, 808
Berlin Airlift, 603, 610
Bias, Implicit Association Test for, 51, 61-62
Bicycle
banking angle, 452
manufacturing, 233, 428, 556, 610
Bird species population decline, 530
Birth(s), in U.S. from 2000 through 2009, 298, 303-304
Birthday, probability of sharing same, 323, 825
Birthday cake, 51
Blood-alcohol concentration, $15-16,19,511-512,517$
Blood pressure, systolic, age and, 163-164
Blood volume and body weight, 445-446
Body fat in adults by age and gender, percent, 253
Body-mass index, 452, 602
Book club selections, 808
Books, arranging on shelf, 803
Book selections, 808, 831
Bottled water, U.S. per capita consumption, 558
Bouquet, mixture of flowers in, 590
Box dimensions, 393
Brain, growth of the human, 525

Break-even analysis, 550-551, 556, 590
Breast cancer, mammography screening data for, 811-812
Bribery (Corruption Perceptions Index), 232
Bridge coupon book/toll passes, 128-129, 136, 172, 205, 312
Budgeting, groceries vs. health care, 279
Building's shadow, 212
Bus fares, 136
Business ventures, 556
C
Cable lengths between vertical poles, 188
Cable service, 742
Calculator manufacturing costs, 458
Call of Duty video game, retail sales of, 518
Calorie-nutrient information, 614
Calories
needed by age groups and activity levels, 657
needed to maintain energy balance, 88
Camera, price before reduction, 129-130, 825
Canoe manufacturing, 556
Car(s). See Automobiles
Carbon-14 dating, 522, 529-530
Carbon dioxide, atmospheric global warming and, 215, 264-266
Cardboard length/width for box, 589
Cards. See Deck of 52 cards, probability and
Cave paintings, prehistoric, 530
CD selection for vacation trip, 829
Celebrity earnings, 216-219
Cellular phones
pricing of plans, 210, 234, 643
replacement of land lines with, 557
Celsius/Fahrenheit temperature interconversions, 17, 204
Centrifugal force, 450-451
Checking accounts, 205
Chernobyl nuclear power plant accident, 475
Chess moves, 800
Chess tournament, round-robin, 168
Children's height modeled, 485, 491, 513
Cholesterol
and dietary restrictions, 601
intake, 601
Cigarette consumption. See Smoking

Citizenship, number of Americans renouncing, 753
Class structure of the United States, 687-688
Club officers, choosing, 808, 829
Coding, 659, 668-669, 671, 672
Coffee consumption, sleep and, 540
Coin tosses, 204, 813, 820, 822, 824
College(s)
attendance, 829
average dormitory charges at, 764-765
percentage of U.S. high school seniors applying to more than three, 476
projected enrollment, 136, 211
salary after, 209
College assignments, excuses for not meeting deadlines, 210
College education
availability of, to qualified students, 136
average yearly earnings and, 135-136
cost of, 2, 4-5, 19
excuses for not meeting assignment deadlines, 210
government aid decreases, 211
women vs. men, 92
College graduates
among people ages 25 and older, in U.S., 476
median starting salaries for, 125-126
percentage among Americans ages 25 and older, 764
College majors, campus mergers and, 138
College students
excuses for not meeting assignment deadlines, 210
freshmen
attitudes about life goals, 126-127
claiming no religious affiliation, 217-218, 220
grade inflation, 121-122
political orientation, 339
hours per week spent studying, by major, 567-568
loan debt, 63
music majors, 559
percentage students playing online games, 559
procrastination and symptoms of physical illness among, 542, 557
sleep hours of, 559
study abroad destinations, 722
women as percentage of, 559
College tuition
government aid decreases, 211
student loan debt, 63
Collinear points, 684
Comedians, net worth of, 492
Comedy act schedule, 808

Comets
Halley's Comet, 702, 717, 730
intersection of planet paths and, 588, 717
Committee formation, $804,806,808$
Commuters, toll discount passes, 128-129, 136, 172, 205, 312
Compound interest
annuity, 772-774, 779
choosing between investments, 473
compounding periods, 477
continuously compounded, 504, $512,516,538,539,617$
formula for, 512
investments, 535
IRA, 779, 829
savings accounts, 515-517
sequences for, 754
value of Manhattan Island and, 476
Computer(s)
assembly, time required for, 459
computer-generated animation, 282
discounts, 304-305, 312
PC vs. tablet sales, 537
price before reduction, 130, 533
prices, 314,616
ratio of students to computers in U.S. public schools, 368
sale price, 75
Computer graphics, 619, 643, 652, 653
Concentration of mixture, 122
Concerts, ticket price increase, 828
Cone volume, 451
Conference attendees, choosing, 806, 808
Continuously compounded interest, 504, 512, 516, 538, 539, 617
Cookies, supply and demand for, 557
Coronary heart disease, 531
Corporate income tax, 172
Corporation officers, choosing, 802-803, 808
Corruption Perceptions Index, 232
Cost(s). See also Manufacturing costs
of college education, 2, 4-5, 19
minimizing, 610
of raising child born in U.S., 748-749
Cost and revenue functions/ breakeven points, 556,616
average, 424-425, 428, 458, 461
bike manufacturing, 428
computer desk manufacturing, 613
graphing calculator manufacturing, 458
PDA manufacturing, 590
radio manufacturing, 311
roast beef sandwiches, 362
running shoe manufacturing, 428, 551
virtual reality headset manufacturing, 424-425
wheelchair manufacturing, 425, 550-552
Course schedule, options in planning, 800
Crime
decrease in violent, 270
mandatory minimum sentences, 558
prison population and, 589
Cryptograms, 668-669, 672. See also Coding

D

Data plan, 643
Deadlines, excuses for not meeting, 210
Dead Sea Scrolls, carbon-14 dating of, 522
Death penalty, sentences rendered by U.S. juries, 381
Death rate, hours of sleep and, 561,565
Deaths
in the 20th century, 614
from 2000 through 2009, 298, 303-304
by snakes, mosquitoes, and snails, 234
Debt
national, 20, 31-32, 34, 35, 91
student loan, 63
Decay model for carbon-14, 529-530
Decibels. See Sound intensity
Deck of 52 cards, probability and, 814-815, 817-818, 822, 823, 830, 831
Decoding a word or message, 669, 671, 672
Deforestation, Amazon, 457
Degree-days, 765
Depreciation, 136, 233
Depression
exercise and, 282
sense of humor and, 106-107, 118-119
in smokers vs. non-smokers, 796-797
Desk manufacturing, 632
Die rolling outcomes, 813-814, 823, 824, 829
Digital media, hours per day spent on, 753
Digital photography, 643, 652-653, 656, 658, 688
Dinosaur bones, potassium-40 dating of, 530
Distance
between houses at closest point, 720
between pairs of cities, 333
safe, expressway speed and, 90
of ship from radio towers on coast, 720, 739
Distance traveled
by car after brakes applied, 567
combined walking and bus travel, 19
by skydiver, 781
Diver's height above water, 441
Diversity index, 90
Divorce, age of wife at marriage and probability of, 100-101
Documentary, selecting artists for, 803-804
"Don't ask, don't tell" policy, 279-280
Dormitory charges, 764-765
Drink order possibilities, 807
Drivers, age of. See under Age(s)
Driving accident while intoxicated, probability of, 825
Driving rate and time for trip, 447
Drug concentration, 277, 428
Drug experiment volunteer selection, 807, 808
Drug offenses, mandatory minimum sentences, 558
Drug tests, mandatory, probability of accurate results, 824
Drug use among teenagers, 531
Drunk driving arrests, age as function of, 430
Dual investments, 19, 130-131, $137,172,211,254,343,454$, 601, 617

E

Eagle, height and time in flight, 338
Earnings. See Salary(-ies)
Earth, age of, 28
Earthquake
epicenter, 333
intensity, 478, 486, 536
Earthquake relief, 603-606
Economic impact of factory on town, 780, 829
Education. See also College education
level of, U.S. population, 764,823
percentage of U.S. adults completing high school, 538
unemployment and years of, 459
Election ballot, 808
Electrical resistance, 147, 453, 832
Elephant's weight, 517
Elevator capacity, 205, 601
Elk population, 540
Elliptical ceiling, 705
Elliptipool, 705, 739
Encoding a message, 659, 668-669, 671, 672
Endangered species, 530
Ethnic diversity, 90
Exam grades, 205, 212, 657
Excuses, for not meeting college assignment deadlines, 210
Exercise
depression and, 282
heart rate and, 3
target heart rate ranges for, 18
Explosion recorded by two microphones, location of, 717-718, 720, 722

Exponential decay model, 530, 538, 539, 690, 722
Expressway speeds and safe distances, 90
Eye color and gender, 831

F

Factory, economic impact on town, 780, 829
Fahrenheit/Celsius temperature interconversions, 17, 204
Family, independent events in, 821 , 823, 830
Federal budget
deficit, 91 (See also National debt)
expenditures on human resources, 429
Federal Express aircraft purchase decisions, 610
Federal income tax, 234
Federal prison population, mandatory minimum sentences and, 558
Fencing
for enclosure, 585-586
maximum area inside, 358,361 , 363
Ferris wheel, 333
Fetal weight, age and, 211
Field's dimensions, 615, 832
Films, Oscar-winning, 313
Financial aid, college student, 211
Flashlight using parabolic reflecting mirror, 731-732, 735
Flood, probability of, 830
Floor dimensions, and area for pool and fountain, 588
Floor space, length and width of, 212
Flu
epidemic, 523-524
inoculation costs, 88
outbreak on campus, 780
time-temperature scenario, 235-236
vaccine mixture, 233, 552-554
Food
cost per item, 279, 568
lunch menus, 610,807
nutritional content, 632, 642
Football field dimensions, 132-133
Football game broadcasts, time devoted to game action, 817
Football's height above ground, 17, 354-355, 632
Foreign-born population in U.S., 172
FoxTrot comic strip, 49
Frame dimensions, 137
Freedom 7 spacecraft flight, 324
Free-falling object's position, 438-439, 441, 459, 832
Frequency, length of violin string and, 449
Freshmen. See under College students
Fuel efficiency, 235

G
Galaxies, elliptical, 791
Garbage, daily per-pound production of, 63
Garden, width of path around, 170
Gasoline price
average U.S. price, 380
supply/demand and, 556-557
Gas pressure in can, 448
Gay marriage, U.S. public opinion on, 531, 558
Gay service members discharged from military, 279-280
Gender
average number of awakenings during night by, 104
bachelor's degrees awarded and, 92
calories needed to maintain energy by, 88
eye color and, 831
first-year U.S. college students claiming no religious affiliation by, 217-218, 220
housework and, 491
labor force participation by, 187
life expectancy by year of birth and, 268
percentage of United States population never married, ages 25-29 and, 268, 270
percent body fat in adults by, 253
wage gap by, 233
and workforce participation, 620
George Washington Bridge, 740
Global warming, 215, 264-266
Golden Gate Bridge, 736
Golden rectangles, 50
Government financial aid, college tuition, 211
Grade inflation, 121-122
Gravitational force, 450
Gravity model, 453
Groceries, budgeting for, 279
Gutter cross-sectional area, 170, 361

H

Half-life
aspirin, 530, 722
radioactive elements, 530, 538, 690
Xanax, 530
Halley's Comet, 702, 717, 730
Hamachiphobia, 531
Happiness
average level of, at different times of day, 323
per capita income and national, 269
HDTV screen dimensions, 164-165, 443
Headlight unit design, 731, 740, 741
Health care
budgeting for, 279
gross domestic product (GDP) spent on, 516
savings needed for expenses during retirement, 531

Health club membership fees, 136
Heart beats over lifetime, 35
Heart disease
coronary, 531
moderate wine consumption and, 269-270
smoking and, 430
Heart rate
exercise and, 3,18
life span and, 460
before and during panic attack, 380
Heat generated by stove, 453
Heat loss of a glass window, 453
Height. See also Ball's height
above ground of building, shadow cast and, 212
child's height modeled, 485, 491, 513
diver's height above water, 441
of eagle, in terms of time in flight, 338
as function of age, 275, 278, 296
healthy weight region for, 541, 595-596, 601-602
maximum, 832
percentage of adult height attained by girl of given age, 491, 513
weight and height recommendations/ calculations, 137, 452
High school education, percentage of U.S. adults completing, 538
Hispanic Americans
cigarette consumption, 613
population growth, 538
HIV infection. See also AIDS
number of Americans living with, 364
T cell count and, 216, 225-226
Hotel room types, 559
Households, mixed religious beliefs in, 204
House sales prices, 234, 781
House value, inflation rate and, 476
Housework, weekly hours of, 491
Hubble Space Telescope, 454, 723, 731, 732
Human resources, federal budget expenditures on, 429
Humor, sense of, depression and, 106-107, 118-119
Hurricanes
barometric air pressure and, 517
probability of, 824
Hydrogen ion concentration, 516-517

I
Ice cream flavor combinations, 804, 808
Identical twins, distinguishing between, 560
Illumination intensity, 452, 453
Imaginary number joke, 147
Implicit Association Test, 51, 61-62

Income
highest paid TV celebrities, 216-219
length of time to earn $\$ 1000,124$
Income tax, federal, 234
Individual Retirement Account (IRA), 772-774, 779, 780, 829
Inflation, cost of, 122
Inflation rate, 476
Influenza. See Flu
Inn charges, before tax, 137
Inoculation costs for flu, 88
Insurance, pet, 253
Intelligence quotient (IQ) and mental/chronological age, 452
Interracial marriage, percentage of Americans in favor of laws prohibiting, 212
Investment(s)
accumulated value of, 471-473, 475, 512
amounts invested per rate, 568
choosing between, 473
compound interest, 471-473, 475-477, 504, 512, 516, 517, 535, 538, 539, 617, 779
for desired return, 212
dual, 19, 130-131, 137, 172, 211, $254,343,454,601,617$
in greeting cards, 556
and interest rates, 19
maximizing expected returns, 611
money divided between high- and low-risk, 601
in play, 556
possibility of stock price changes, 829
IQ (intelligence quotient) and mental/chronological age, 452
IRA. See Individual Retirement Account

J
Jeans, price of, 312
Jet skis, 616
Job applicants, filling positions with, 830
Job offers, 765, 766, 778
Jokes about books, 809

K

Kidney stone disintegration, 702, 722
Kinetic energy, 453

L

Labor force, participation by gender, 187
Labrador retrievers, color of, 60
Ladder's reach, 169
Land line telephones, replacement with cell phones, 557
Lead, half-life of, 530
Learning curve, 122

Learning theory project, 524
Lemon tree, maximum yield, 363
Length of violin string and frequency, 449
Letter arrangements, 808
License plates, 801
Life, most time-consuming activities during, 135
Life events, sense of humor and response to, 106-107, 118-119
Life expectancy, 135, 268
Life span, heart rate and, 460
Light intensity, 461, 515
Light reflectance and parabolic surface, 731, 740
Line formation, 809
Literacy and child mortality, 255, 269
Little League baseball team batting order, 801-802
Living alone, number of Americans, 271, 274-275, 342
Long-distance telephone charges, 137
Lottery
numbers selection, 808
probability of winning, 799, 815-816, 823, 824, 830, 831
LOTTO, numbers selection for, 808
Loudness, 257, 453, 459, 491, 502, 531,539
Love, course of over time, 204
Luggage, volume of carry-on, 407-408
Lunch menus, 610,807

M

Mailing costs, 253
Mall browsing time and average amount spent, 464, 465
Mammography screening data, 811-812
Mandatory drug testing, probability of accurate results, 824
Manufacturing and testing, hours needed for, 642
Manufacturing constraints, 604, 606, 607, 609, 615
Manufacturing costs. See also Cost and revenue functions/ breakeven points
bicycles, 233
calculator, 458
PDAs, 590
portable satellite radio players, 461
tents, 615
virtual reality headsets, 411 , 424-425
wheelchair, 425
Marching band, 560
Marijuana use by U.S. high school seniors, 104

Marital status
unmarried Americans (ages 25-29), 268, 270
of U.S. population, 557, 819-820, 822
Markup, 137
Marriage, interracial, percentage of Americans in favor of laws prohibiting, 212
Marriage age
of men, 339
preferred age in a mate, 322-323
of wife, probability of divorce and, 100-101
Marriage equality, U.S. public opinion on, 531, 558
Mathematics department personnel, random selection from, 824
Mathematics exam problems, 809
Maximum area, $358,361,410,457$
Maximum height, 832
Maximum product, 361, 410, 460, 765
Maximum profit, 410, 460, 607, 616
Maximum scores, 610
Maximum yield, 363
Median age. See under Age(s)
Mega Millions, probability of winning, 823
Memory retention, 476, 491, 492, 516, 536
Mental illness, number of U.S. adults with, 538
Miles per gallon, 235
Military, gay service members discharged from, 279-280
Minimum product, 357,457
Miscarriages, by age, 531
Mixture problems, 122,233, 552-554, $559,590,613,616,643$
Modernistic painting consisting of geometric figures, 569
Moiré patterns, 721
Moon weight of person given Earth weight, 452
Moth eggs and abdominal width, 382,393
Movies
ranking, 808
ticket price of, 210
top ten Oscar-winning, 313
Multiple-choice test, 800-801, 807, 831
Multiplier effect, 776-777

N

National debt, 20,31-32, 34, 35, 91
National diversity index, 90
National Football League (NFL) broadcasts, time devoted to game action, 817
Natural disaster relief, 610
Nature, Fibonacci numbers found in, 744
Negative life events, sense of humor and response to, 106-107, 118-119

Negative numbers, square roots of, 139
Negative square roots, 147
Neurons in human vs. gorilla brain, 63
Newton's Law of Cooling, 533
NFL (National Football League) broadcasts, time devoted to game action, 817
Nutritional content, 632,642

0

Oculus Rift headset manufacturing costs, 411, 424-425
Officers for Internet marketing consulting firm, choosing, 802-803
Ohm's law, 147
One-person households. See Living alone, number of Americans
Online games, percentage of U.S. college students playing, 559
Open box lengths and widths, 170
Orbits
of comets, 588, 702, 717, 721, 730
perigee/apogee of satellite's orbit, 706
of planets, 588, 701, 705
Oscar-winning films, top ten, 313

P

Palindromic numbers, 824
Panic attack, heart rate before and during, 380
Parabolic arch and boat clearance, 736
Paragraph formation, 808
Park, pedestrian route around, 169
Parking lot, dimensions of, 169
Parthenon at Athens, as golden rectangle, 50
Password construction, 807, 808
Path around swimming pool, dimensions of, 137
Pay phones in U.S., number of (2000-2006), 123
Payroll spent in town, 829
PC (personal computer) sales, 537
PDA manufacturing costs and revenues, 590
Pedestrian route around park, 169
Pen and pad, cost of, 832
Pen choices, 807
Pendulum swings, 779
Per capita income and national happiness, 269
Perceived length of time period and age, 453
Perigee/apogee of satellite's orbit, 706
Personal computer (PC) sales, 537
Pest-eradication program, 780
Pets
insurance for, 253
spending on, 755-756
pH
of human mouth after eating sugar, 428
scale, 516-517
Phone calls between cities, 444,453
Photography. See Digital
photography
Physician visits, 254
Piano keyboard, Fibonacci numbers on, 744
Pitch of a musical tone, 459
Pizza, size and topping options, 800
Planets
elliptical orbits, 701
years, 187
Playground, dimensions of, 361
Playing cards. See Deck of 52 cards, probability and
Poker hands, 806
Police officers, average salary, 32
Political affiliation, academic major and, 824
Political identification
college freshmen, 339
Implicit Association Test scores, 62
Pollutants in the air, 687
Pollution removal costs, 76
Pool dimensions, 137, 169
Population
Africa, 521
alligator, 172
Asia, 539
bird species in danger of extinction, 530
Bulgaria, 529
California, 515, 778
Canada, 533
Colombia, 529
elk, 540
Europe, 590
exponential growth modeling, 529, 530
Florida, 603, 828-829
foreign-born (U.S.), 172, 569
geometric growth in, 768-769
Germany, 529, 539
gray wolf, 470-471
Hispanic, 538
Hungary, 518
India, 475, 529
Iraq, 529
Israel, 529
Japan, 529
Madagascar, 529
Mexico, 530
New Zealand, 530
Nigeria, 532
over age 65 (U.S.), 532
Pakistan, 529
Palestinian, 529
Philippines, 529
racial and ethnic breakdown of, 632-633
Russia, 529
in scientific notation, 30
single, 271-272, 274-275
Texas, 515, 779
tigers, worldwide, 379
Uganda, 533
United States
age 65 and older, 532
by gender, 311, 459
modeling growth of, 520-521
percentage never married, ages 25-29, 268, 270
by race/ethnicity, 759-760
total tax collections and, 34
and walking speed, 525
world, $92,312,519,526-528,531$, 539
Population projections, 49-50, 136, 529
Potassium-40, 530
Powerball, probability of winning, 815-816, 824
Price(s)
advertising and, 449-450, 454
computer, 314,533
gasoline, 380, 556-557
of a house, 234,781
jeans, 312
of movie ticket, 210
of rock concert ticket, 828
supply/demand and, 556-557
Price reductions, 129-130, 137, 138, 172, 210, 214, 314
Pricing options, 206
Prison population
mandatory minimum sentences and, 558
violent crime and, 589
Problem solving, payments for, 138
Problem solving time, 450
Profit function, 362, 552, 556, 590, 604
Profits
department store branches, 312
maximizing, $362,410,460,609$, 610, 615, 616
maximum, 460
maximum daily, 607, 633
maximum monthly, 609
on newsprint/writing paper, 615
production and sales for gains in, 205
total monthly, 609
Projectiles, paths of, 346, 459. See also Ball's height above ground; Free-falling object's position
Pyramid volume, 459

R

Racial diversity, 90
Racial prejudice, Implicit Association Test for, 51, 61-62
Radiation intensity and distance of radiation machine, 452
Radio manufacturing/sales, 556
Radio show programming, 808
Radio station call letters, 807
Radio towers on coast, distance of ship from, 720, 739

Raffle prizes, 807, 808
Rain gutter cross-sectional area, 170, 361
Rate of travel
airplane rate, 559
average rate and time traveled, 233
average rate on a round-trip commute, 88
rowing rate, 559
and time for trip, 447
Razor blades sold, 568
Real-estate sales and prices (U.S.), 781
Rectangle
area of, 50
dimensions of, 169, 172, 212, 297, 442, 560, 585-586, 588, 614, 616, 617, 685, 780
dimensions of, maximizing enclosed area, 358
golden, 50
perimeter of, $50,88,123$
Rectangular box dimensions, 393
Rectangular carpet dimensions, 214
Rectangular field dimensions, 211
Rectangular garden
dimensions of, 343
width of path around, 170
Rectangular sign dimensions, 170
Rectangular solid, volume of, 62
Reflecting telescopes, 731
Reflections, 287
Relativity theory, space exploration and, $35,47,50$
Religious affiliation
first-year U.S. college students claiming no, 217-218, 220
spouses with different, 204
Rental
car, 189-190, 200-201, 212, 430
rug cleaner, 136
truck, 205, 742
Repair bill
cost of parts and labor on, 137
estimate, 205
Residential community costs, adult, 755,762
Resistance, electrical, 147, 453, 832
Restaurant tables and maximum occupancy, 559
Revenue functions. See Cost and revenue functions/ break-even points
Reversibility of thought, 64
Right triangle, isosceles, 170
Roads to expressway, length of, 188
Rock concerts, ticket price increase, 828
Roulette wheel, independent events on, 821
Royal flush (poker hand), probability of, 806
Rug cleaner rental rates, 136
Rug's length and width, 588
Runner's pulse, 517

Salary(-ies)
after college, 209
choosing between pay arrangements, 343
college education and, 135-136
college graduates with undergraduate degrees, 125-126
comparing, 764-766
earnings with overtime, 540
gross amount per paycheck, 137
lifetime computation, 771-772, 779
over six-year period, 829
over ten-year period, 828
police officers, average, 32
salesperson's earnings/ commissions, 210, 832
summer sales job, 343
total, $765,779,829,830$
wage gap in, by gender, 233
weekly, 123, 609
Sale prices, 75. See also Price reductions
Sales figures
PC vs. tablet, 537
price/advertising and, 449-450, 454
real estate, 781
theater ticket, 568
Salesperson's earnings, 210, 832
Satellite, apogee/perigee of orbit, 706
Satellite dish, 731, 736, 740
Satellite radio players, manufacturing costs of, 461
Savings
and compound interest, 515-516
geometric sequencing, 778,779
needed for health-care expenses during retirement, 531
total, 779
Scattering experiments, 720
Scheduling of appearances, 808
Semi-elliptical archway and truck clearance, 702-703, 705, 722,739
Sense of humor, depression and, 106-107
Shaded region areas, 62,75
Shading process, 780
Shadows, hyperbolic, 707
Shipping cost, 339. See also Mailing costs
Ship tracking system, 588
Shot put
angle and height of, 360-361
path of, given angle, 169
Shower, gallons of water used during, 722
Skeletons, carbon-14 dating of, 530
Skydiver's fall, 446-447, 459
Sleep
average number of awakenings during night, by age and gender, 104
coffee consumption and, 540
college students' nightly hours of, 559
death rate and hours of, 561,565
hours of, on typical night, 810
Smoking
among Americans, by ethnicity, 613
deaths and disease incidence ratios, 429
and heart disease, 430
incidence of ailments, smokers vs. non-smokers, 796-797
Soccer field dimension, 137
Social Security benefits/costs, 213
Soda (soft drinks), U.S. per capita consumption, 558
Solar energy industry, number of U.S. jobs in, 538

Sonic boom, hyperbolic shape of, 717
Sound intensity, 257, 453, 459, 491, 502,531,539
Space exploration and relativity theory, $35,47,50$
Space flight/travel
aging rate and, $35,47,50$
Freedom 7 spacecraft, 324
Hubble Space Telescope, 454, 723,731, 732
relativity theory and, $35,47,50$
Spaceguard Survey, 721
Speaker loudness, 459
Speed. See Rate of travel
Spinner, probability of pointer landing in specific way, 819 , 823, 830, 831
Spouses with different faiths, 204
Spring, force required to stretch, 452
Square, length of side of, 170
Stadium seats, 765
Standbys for airline seats, 808
Stereo speaker loudness, 459
Stolen plants, 138
Stomach acid, pH of, 517
Stopping distances
for car, 431, 441-442
for motorcycles at selected speeds, 459
for trucks, 442
Stories, matching graphs with, 105
Stress levels, 359
String length and frequency, 449
Strontium-90, 523
Student government elections, 804
Student loan debt, 63
Students, probability of selecting specific, 831
Studying, hours per week by college students, 567-568
Sunscreen, exposure time without burning and, 2
Supply and demand, 556-557
Supply-side economics, 394
Surface sunlight, intensity beneath ocean's surface, 515
Sushi, population who won't try, 531
Suspension bridges, parabolas formed by, 730, 736, 740

Swimming pool
path around, 137, 170
tile border, 171
Systolic blood pressure, age and, 163-164

T

Tablet sales, 537
Talent contest, picking winner and runner-up in, 809
Target, probability of hitting, 824
Target heart rate for exercise, 18
Task mastery, 502, 537
Taxes
bills, 205
federal tax rate schedule for tax owed, 253
government spending and, 34
income
corporate, 172
federal, 234
inn charges before, 137
rebate and multiplier effect, 776-777, 780
tax rate percentage and revenue, 394
U.S. population and total tax collections, 34
Teenage drug use, 531
Telephone(s)
number of pay phones in U.S. (2000-2006), 123
replacement of land lines with cell phones, 557
Telephone numbers in United States, 801, 831
Telephone plans
cellular plans, 210, 234, 643
per-minute costs, 245-246, 252
texting plans, $123,135,205,214$
Television
manufacturing profits and constraints, 609
programming of movies, 808
sale prices, 75
screen area, 165
screen dimensions, 164-165, 443 588
viewing, by annual income, 184
Temperature
of cooling cup of coffee, 536
degree-days, 765
and depth of water, 452
in enclosed vehicle, increase in, 487-488
Fahrenheit-Celsius interconversions, 17, 204
global warming, 215, 264-266
home temperature as function of time, 296-297
increase in an enclosed vehicle, 531
Newton's Law of Cooling, 533
time-temperature flu scenario, 235-236
Tennis club payment options, 138
Tennis court dimensions, 137
Test scores, maximum, 610
Texting plans, 123, 135, 205, 214
Theater attendance, maximizing revenue from, 610
Theater seats, 765,828
Theater ticket sales, 568
Thefts in U.S., 457
Thorium-229, 530
Ticket prices/sales
movie ticket prices, 210
rock concert prices, 828
theater ticket sales, 568
Tigers, worldwide population, 379
Time, perceived length of, 453
Time traveled, average rate and, 233
Tolls, 128-129, 136, 172, 205, 312
Traffic control, 634, 638-643, 688
Transformations of an image, 653-654, 656, 688
Triangle
area, 684
isosceles, 170, 559
Trucks
clearance through semi-elliptical archway, 702-703, 705, 722, 739
rental costs, 205, 742
stopping distances required for, 442
Tuition, government aid for, 211
TV. See Television

U

Unemployment and years of education, 459
U.S. citizenship, number of

Americans renouncing, 753
Universe imagery, 723
V
Vacation lodgings, 601
Vacation plan packages, cost of, 614
Vaccine, mixture for flu, 233, 552-554
Value
of an annuity, 779,829
of car, over time, 754
of house, inflation rate and, 476
of investments, 471-473, 475, 512
Van, groups fitting into, 808
Vehicle fatalities, driver's age and, 169
Vertical pole supported by wire, 172, 214
Video games, retail sales of, 518
Violent crime
decrease in, 270
prison population and, 589
Violin string length and frequency, 449
Virtual reality headset manufacturing costs, 411 , 424-425
Vitamin content, 642
Volume (sound). See Sound intensity
Volume (space)
of carry-on luggage, 407-408
of cone, 451
for given regions, 75
of open box, 62
of solid, 409
Voters, age and gender of, 657
Voting ballot, 808

W

Wage gap, 233
Wages. See Salary(-ies)
Walking speed and city population, 525
Wardrobe selection, 798-800
Water
bottled, U.S. per capita consumption, 558
gallons used during shower, 722
pressure and depth, 444-445
temperature and depth, 452
used in a shower, 446
Water pipe diameter, number of houses served and size of, 452
Water supply produced by snowpack, 459
Weight
blood volume and body, 445-446
elephant's, age and, 517
of great white shark, cube of its length and, 447
healthy, for height and age, 541, 595-596, 601-602
and height recommendations/ calculations, 137, 452
of human fetus, age and, 211
moon weight of person given Earth weight, 452
Weightlifting, 532
Wheelchair business
manufacturing costs, 425
profit function for, 552
revenue and cost functions for, 550-551
Wheelchair ramp, vertical distance of, 169
Whispering gallery, 701, 705, 706, 741
White House, rooms, bathrooms, fireplaces and elevators in, 633
Will distribution, 138
Wind force, 453
Wind pressure, 453
Wine consumption, heart disease and, 269-270
Wire length, 170
Women. See also Gender average level of happiness at different times of day, 323
and housework, 491
in the labor force, 187
percentage of college graduates among Americans ages 25 and older, 764
workforce participation, 620
Workforce, percentage of U.S. women in, 620

X
Xanax, half-life of, 530

Prerequisites: Fundamental Concepts of Algebra

What can algebra possibly have to tell me about

- the skyrocketing cost of a college education?
- student-loan debt?
- my workouts?
- the effects of alcohol?
- the meaning of the national debt that is nearly $\$ 19$ trillion?
- time dilation on a futuristic high-speed journey to a nearby star?
- racial bias?
- ethnic diversity in the United States?
- the widening imbalance between numbers of women and men on college campuses?
This chapter reviews fundamental concepts of algebra that are prerequisites for the study of college algebra. Throughout the chapter, you will see how the special language of algebra describes your world.

HERE'S WHERE YOU'LL FIND THESE APPLICATIONS:

College costs: Section P.1,
Example 2; Exercise Set P.1, Exercises 131-132
Student-loan debt: Mid-Chapter Check Point, Exercise 31
Workouts: Exercise Set P.1, Exercises 129-130
The effects of alcohol: Blitzer Bonus beginning on page 15
The national debt: Section P.2, Example 12
Time dilation: Blitzer Bonus on page 47
Racial bias: Exercise Set P.4, Exercises 91-92
U.S. ethnic diversity: Chapter P Review, Exercise 23
College gender imbalance:
Chapter P Test, Exercise 32.

Section P. 1

What am I supposed to learn?

After studying this section, you should be able to:
(1) Evaluate algebraic expressions.
(2) Use mathematical models.
(3) Find the intersection of two sets.
(4) Find the union of two sets.
(5) Recognize subsets of the real numbers.
(6) Use inequality symbols.
(7) Evaluate absolute value.
(8) Use absolute value to express distance.
(9) Identify properties of the real numbers.
(10) Simplify algebraic expressions.

Algebraic Expressions, Mathematical Models, and Real Numbers

How would your lifestyle change if a gallon of gas cost $\$ 9.15$? Or if the price of a staple such as milk was $\$ 15$? That's how much those products would cost if their prices had increased at the same rate college tuition has increased since 1980. (Source: Center for College Affordability and Productivity) In this section, you will learn how the special language of algebra describes your world, including the skyrocketing cost of a college education.

Algebraic Expressions

Algebra uses letters, such as x and y, to represent numbers. If a letter is used to represent various numbers, it is called a variable. For example, imagine that you are basking in the sun on the beach. We can let x represent the number of minutes that you can stay in the sun without burning with no sunscreen. With a number 6 sunscreen, exposure time without burning is six times as long, or 6 times x. This can be written $6 \cdot x$, but it is usually expressed as $6 x$. Placing a number and a letter next to one another indicates multiplication.

Notice that $6 x$ combines the number 6 and the variable x using the operation of multiplication. A combination of variables and numbers using the operations of addition, subtraction, multiplication, or division, as well as powers or roots, is called an algebraic expression. Here are some examples of algebraic expressions:

$$
x+6, x-6, \quad 6 x, \quad \frac{x}{6}, \quad 3 x+5, \quad x^{2}-3, \quad \sqrt{x}+7
$$

Many algebraic expressions involve exponents. For example, the algebraic expression

$$
4 x^{2}+330 x+3310
$$

approximates the average cost of tuition and fees at public U.S. colleges for the school year ending x years after 2000. The expression x^{2} means $x \cdot x$ and is read " x to the second power" or " x squared." The exponent, 2 , indicates that the base, x, appears as a factor two times.

Exponential Notation

If n is a counting number ($1,2,3$, and so on),

b^{n} is read "the nth power of b " or " b to the nth power." Thus, the nth power of b is defined as the product of n factors of b. The expression b^{n} is called an exponential expression. Furthermore, $b^{1}=b$.

For example,

$$
8^{2}=8 \cdot 8=64, \quad 5^{3}=5 \cdot 5 \cdot 5=125, \quad \text { and } \quad 2^{4}=2 \cdot 2 \cdot 2 \cdot 2=16
$$

Evaluating Algebraic Expressions

Evaluating an algebraic expression means to find the value of the expression for a given value of the variable.

Many algebraic expressions involve more than one operation. Evaluating an algebraic expression without a calculator involves carefully applying the following order of operations agreement:

The Order of Operations Agreement

1. Perform operations within the innermost parentheses and work outward. If the algebraic expression involves a fraction, treat the numerator and the denominator as if they were each enclosed in parentheses.
2. Evaluate all exponential expressions.
3. Perform multiplications and divisions as they occur, working from left to right.
4. Perform additions and subtractions as they occur, working from left to right.

EXAMPLE 1 Evaluating an Algebraic Expression

Evaluate $7+5(x-4)^{3}$ for $x=6$.

SOLUTION

$$
\begin{aligned}
7+5(x-4)^{3} & =7+5(6-4)^{3} & & \text { Replace } x \text { with } 6 . \\
& =7+5(2)^{3} & & \text { First work inside parentheses: } 6-4=2 . \\
& =7+5(8) & & \text { Evaluate the exponential expression: } \\
& =7+40 & & 2^{3}=2 \cdot 2 \cdot 2=8 . \\
& =47 & & \text { Multiply: } 5(8)=40 .
\end{aligned}
$$

Check Point 1 Evaluate $8+6(x-3)^{2}$ for $x=13$.
(2) Use mathematical models.

Formulas and Mathematical Models

An equation is formed when an equal sign is placed between two algebraic expressions. One aim of algebra is to provide a compact, symbolic description of the world. These descriptions involve the use of formulas. A formula is an equation that uses variables to express a relationship between two or more quantities.

Here are two examples of formulas related to heart rate and exercise.

The process of finding formulas to describe real-world phenomena is called mathematical modeling. Such formulas, together with the meaning assigned to the variables, are called mathematical models. We often say that these formulas model, or describe, the relationships among the variables.

EXAMPLE 2 Modeling the Cost of Attending a Public College

The bar graph in Figure P. 1 shows the average cost of tuition and fees for public four-year colleges, adjusted for inflation. The formula

$$
T=4 x^{2}+330 x+3310
$$

models the average cost of tuition and fees, T, for public U.S. colleges for the school year ending x years after 2000 .
a. Use the formula to find the average cost of tuition and fees at public U.S. colleges for the school year ending in 2010.
b. By how much does the formula underestimate or overestimate the actual cost shown in Figure P.1?

Average Cost of Tuition and Fees at Public Four-Year U.S. Colleges

FIGURE P. 1
Source: The College Board

SOLUTION

a. Because 2010 is 10 years after 2000, we substitute 10 for x in the given formula. Then we use the order of operations to find T, the average cost of tuition and fees for the school year ending in 2010.
$T=4 x^{2}+330 x+3310 \quad$ This is the given mathematical model.
$T=4(10)^{2}+330(10)+3310$ Replace each occurrence of x with 10 .
$T=4(100)+330(10)+3310$ Evaluate the exponential expression: $10^{2}=10 \cdot 10=100$.
$T=400+3300+3310 \quad$ Multiply from left to right: $4(100)=400$ and $330(10)=3300$.
$T=7010$
Add.
The formula indicates that for the school year ending in 2010, the average cost of tuition and fees at public U.S. colleges was $\$ 7010$.
b. Figure P. 1 shows that the average cost of tuition and fees for the school year ending in 2010 was $\$ 7020$.
The cost obtained from the formula, $\$ 7010$, underestimates the actual data value by $\$ 7020-\$ 7010$, or by $\$ 10$.

Blitzer Bonus || Is College Worthwhile?

"Questions have intensified about whether going to college is worthwhile," says Education Pays, released by the College Board Advocacy \& Policy Center."For the typical student, the investment pays off very well over the course of a lifetime, even considering the expense."

Among the findings in Education Pays:

- Mean (average) full-time earnings with a bachelor's degree in 2014 were $\$ 62,504$, which is $\$ 27,768$ more than high school graduates.
- Compared with a high school graduate, a four-year college graduate who enrolled in a public university at age 18 will break even by age 33 . The college graduate will have earned enough by then to compensate for being out of the labor force for four years and for borrowing enough to pay tuition and fees, shown in Figure P.1.

GREAT QUESTION!

Can I use symbols other than braces when writing sets using the roster method?
No. Grouping symbols such as parentheses, (), and square brackets, [], are not used to represent sets in the roster method. Furthermore, only commas are used to separate the elements of a set. Separators such as colons or semicolons are not used.

Find the intersection of two sets.

S Check Point 2

a. Use the formula $T=4 x^{2}+330 x+3310$, described in Example 2, to find the average cost of tuition and fees at public U.S. colleges for the school year ending in 2014.
b. By how much does the formula underestimate or overestimate the actual cost shown in Figure P.1?

Sometimes a mathematical model gives an estimate that is not a good approximation or is extended to include values of the variable that do not make sense. In these cases, we say that model breakdown has occurred. For example, it is not likely that the formula in Example 2 would give a good estimate of tuition and fees in 2050 because it is too far in the future. Thus, model breakdown would occur.

Sets

Before we describe the set of real numbers, let's be sure you are familiar with some basic ideas about sets. A set is a collection of objects whose contents can be clearly determined. The objects in a set are called the elements of the set. For example, the set of numbers used for counting can be represented by

$$
\{1,2,3,4,5, \ldots\}
$$

The braces, $\{$ \}, indicate that we are representing a set. This form of representation, called the roster method, uses commas to separate the elements of the set. The symbol consisting of three dots after the 5, called an ellipsis, indicates that there is no final element and that the listing goes on forever.

A set can also be written in set-builder notation. In this notation, the elements of the set are described but not listed. Here is an example:

The same set written using the roster method is

$$
\{1,2,3,4,5\} .
$$

If A and B are sets, we can form a new set consisting of all elements that are in both A and B. This set is called the intersection of the two sets.

Definition of the Intersection of Sets

The intersection of sets A and B, written $A \cap B$, is the set of elements common to both set A and set B. This definition can be expressed in set-builder notation as follows:
$A \cap B=\{x \mid x$ is an element of A AND x is an element of $B\}$.

FIGURE P. 2 Picturing the intersection of two sets
(4) Find the union of two sets.

FIGURE P. 3 Picturing the union of two sets

GREAT QUESTION!

How can I use the words union and intersection to help me distinguish between these two operations?
Union, as in a marriage union, suggests joining things, or uniting them. Intersection, as in the intersection of two crossing streets, brings to mind the area common to both, suggesting things that overlap.

Figure $\mathbf{P} .2$ shows a useful way of picturing the intersection of sets A and B. The figure indicates that $A \cap B$ contains those elements that belong to both A and B at the same time.

EXAMPLE 3 Finding the Intersection of Two Sets

Find the intersection: $\{7,8,9,10,11\} \cap\{6,8,10,12\}$.

SOLUTION

The elements common to $\{7,8,9,10,11\}$ and $\{6,8,10,12\}$ are 8 and 10 . Thus,

$$
\{7,8,9,10,11\} \cap\{6,8,10,12\}=\{8,10\}
$$

Check Point 3 Find the intersection: $\{3,4,5,6,7\} \cap\{3,7,8,9\}$.

If a set has no elements, it is called the empty set, or the null set, and is represented by the symbol \varnothing (the Greek letter phi). Here is an example that shows how the empty set can result when finding the intersection of two sets:

$$
\{2,4,6\} \cap\{3,5,7\}=\varnothing
$$

Another set that we can form from sets A and B consists of elements that are in A or B or in both sets. This set is called the union of the two sets.

Definition of the Union of Sets

The union of sets A and B, written $A \cup B$, is the set of elements that are members of set A or of set B or of both sets. This definition can be expressed in set-builder notation as follows:

$$
A \cup B=\{x \mid x \text { is an element of } A \text { OR } x \text { is an element of } B\}
$$

Figure P. 3 shows a useful way of picturing the union of sets A and B. The figure indicates that $A \cup B$ is formed by joining the sets together.

We can find the union of set A and set B by listing the elements of set A. Then we include any elements of set B that have not already been listed. Enclose all elements that are listed with braces. This shows that the union of two sets is also a set.

EXAMPLE 4 Finding the Union of Two Sets

Find the union: $\{7,8,9,10,11\} \cup\{6,8,10,12\}$.

SOLUTION

To find $\{7,8,9,10,11\} \cup\{6,8,10,12\}$, start by listing all the elements from the first set, namely, $7,8,9,10$, and 11 . Now list all the elements from the second set that are not in the first set, namely, 6 and 12. The union is the set consisting of all these elements. Thus,

$$
\{7,8,9,10,11\} \cup\{6,8,10,12\}=\{6,7,8,9,10,11,12\}
$$

$$
\text { Although } 8 \text { and } 10 \text { appear in both sets, }
$$

$$
\text { do not list } 8 \text { and } 10 \text { twice. }
$$

Check Point 4 Find the union: $\{3,4,5,6,7\} \cup\{3,7,8,9\}$.

Recognize subsets of the real numbers.

The Set of Real Numbers

The sets that make up the real numbers are summarized in Table P.1. We refer to these sets as subsets of the real numbers, meaning that all elements in each subset are also elements in the set of real numbers.

Table P. 1 Important Subsets of the Real Numbers

Name/Symbol	Description	Examples
Natural numbers \mathbb{N}	$\{1,2,3,4,5, \ldots\}$ These are the numbers that we use for counting.	2,3, 5, 17
Whole numbers W	$\{0,1,2,3,4,5, \ldots\}$ The set of whole numbers includes 0 and the natural numbers.	0,2,3, 5, 17
Integers \mathbb{Z}	$\{\ldots,-5,-4,-3,-2,-1,0,1,2,3,4,5, \ldots\}$ The set of integers includes the negatives of the natural numbers and the whole numbers.	$-17,-5,-3,-2,0,2,3,5,17$
Rational numbers	$\left\{\left.\frac{a}{b} \right\rvert\, a \text { and } b \text { are integers and } b \neq 0\right\}$ This means that b is not equal to zero. The set of rational numbers is the set of all numbers that can be expressed as a quotient of two integers, with the denominator not 0 . Rational numbers can be expressed as terminating or repeating decimals.	$\begin{aligned} & -17=\frac{-17}{1},-5=\frac{-5}{1},-3,-2, \\ & 0,2,3,5,17 \\ & \frac{2}{5}=0.4 \\ & \frac{-2}{3}=-0.6666 \ldots=-0 . \overline{6} \end{aligned}$
Irrational numbers !	The set of irrational numbers is the set of all numbers whose decimal representations are neither terminating nor repeating. Irrational numbers cannot be expressed as a quotient of integers.	$\begin{aligned} \sqrt{2} & \approx 1.414214 \\ -\sqrt{3} & \approx-1.73205 \\ \pi & \approx 3.142 \\ -\frac{\pi}{2} & \approx-1.571 \end{aligned}$

TECHNOLOGY

A calculator with a square root key gives a decimal approximation for $\sqrt{2}$, not the exact value.

Real numbers

Rational numbers	Irrational numbers
Integers Whole numbers Natural numbers	

FIGURE P. 4 Every real number is either rational or irrational.

Notice the use of the symbol \approx in the examples of irrational numbers. The symbol means "is approximately equal to." Thus,

$$
\sqrt{2} \approx 1.414214
$$

We can verify that this is only an approximation by multiplying 1.414214 by itself. The product is very close to, but not exactly, 2 :

$$
1.414214 \times 1.414214=2.000001237796
$$

Not all square roots are irrational. For example, $\sqrt{25}=5$ because $5^{2}=5 \cdot 5=25$. Thus, $\sqrt{25}$ is a natural number, a whole number, an integer, and a rational number $\left(\sqrt{25}=\frac{5}{1}\right)$.

The set of real numbers is formed by taking the union of the sets of rational numbers and irrational numbers. Thus, every real number is either rational or irrational, as shown in Figure P.4.

Real Numbers

The set of real numbers is the set of numbers that are either rational or irrational:

$$
\{x \mid x \text { is rational or } x \text { is irrational\}. }
$$

The symbol \mathbb{R} is used to represent the set of real numbers. Thus,

$$
\mathbb{R}=\{x \mid x \text { is rational }\} \cup\{x \mid x \text { is irrational }\} .
$$

EXAMPLE 5 Recognizing Subsets of the Real Numbers

Consider the following set of numbers:

$$
\left\{-7,-\frac{3}{4}, 0,0 . \overline{6}, \sqrt{5}, \pi, 7.3, \sqrt{81}\right\} .
$$

List the numbers in the set that are
a. natural numbers.
b. whole numbers.
c. integers.
d. rational numbers.
e. irrational numbers.
f. real numbers.

SOLUTION

a. Natural numbers: The natural numbers are the numbers used for counting. The only natural number in the set $\left\{-7,-\frac{3}{4}, 0,0 . \overline{6}, \sqrt{5}, \pi, 7.3, \sqrt{81}\right\}$ is $\sqrt{81}$ because $\sqrt{81}=9$. (9 multiplied by itself, or 9^{2}, is 81 .)
b. Whole numbers: The whole numbers consist of the natural numbers and 0 . The elements of the set $\left\{-7,-\frac{3}{4}, 0,0 . \overline{6}, \sqrt{5}, \pi, 7.3, \sqrt{81}\right\}$ that are whole numbers are 0 and $\sqrt{81}$.
c. Integers: The integers consist of the natural numbers, 0 , and the negatives of the natural numbers. The elements of the set $\left\{-7,-\frac{3}{4}, 0,0 . \overline{6}, \sqrt{5}, \pi, 7.3\right.$, $\sqrt{81}\}$ that are integers are $\sqrt{81}, 0$, and -7 .
d. Rational numbers: All numbers in the set $\left\{-7,-\frac{3}{4}, 0,0 . \overline{6}, \sqrt{5}, \pi, 7.3, \sqrt{81}\right\}$ that can be expressed as the quotient of integers are rational numbers. These include $-7\left(-7=\frac{-7}{1}\right),-\frac{3}{4}, 0\left(0=\frac{0}{1}\right)$, and $\sqrt{81}\left(\sqrt{81}=\frac{9}{1}\right)$. Furthermore, all numbers in the set that are terminating or repeating decimals are also rational numbers. These include $0 . \overline{6}$ and 7.3
e. Irrational numbers:The irrational numbers in the set $\left\{-7,-\frac{3}{4}, 0,0 . \overline{6}, \sqrt{5}, \pi\right.$, $7.3, \sqrt{81}\}$ are $\sqrt{5}(\sqrt{5} \approx 2.236)$ and $\pi(\pi \approx 3.14)$. Both $\sqrt{5}$ and π are only approximately equal to 2.236 and 3.14 , respectively. In decimal form, $\sqrt{5}$ and π neither terminate nor have blocks of repeating digits.
f. Real numbers: All the numbers in the given set $\left\{-7,-\frac{3}{4}, 0,0 . \overline{6}\right.$, $\sqrt{5}, \pi, 7.3, \sqrt{81}\}$ are real numbers.
\oint Check Point 5 Consider the following set of numbers:

$$
\left\{-9,-1.3,0,0 . \overline{3}, \frac{\pi}{2}, \sqrt{9}, \sqrt{10}\right\} .
$$

List the numbers in the set that are
a. natural numbers
b. whole numbers
c. integers.
d. rational numbers
e. irrational numbers
f. real numbers.

The Real Number Line

The real number line is a graph used to represent the set of real numbers. An arbitrary point, called the origin, is labeled 0 . Select a point to the right of 0 and label it 1 . The distance from 0 to 1 is called the unit distance. Numbers to the right of the origin are positive and numbers to the left of the origin are negative. The real number line is shown in Figure P.5.

FIGURE P. 5 The real number line

GREAT QUESTION!

How did you locate $\sqrt{2}$ as a precise point on the number line in Figure P.6?

We used a right triangle with two legs of length 1 . The remaining side has a length measuring $\sqrt{2}$.

We'll have lots more to say about right triangles later in the book.

6 Use inequality symbols.

Real numbers are graphed on a number line by placing a dot at the correct location for each number. The integers are easiest to locate. In Figure P.6, we've graphed six rational numbers and three irrational numbers on a real number line.

FIGURE P. 6 Graphing numbers on a real number line

Every real number corresponds to a point on the number line and every point on the number line corresponds to a real number. We say that there is a one-to-one correspondence between all the real numbers and all points on a real number line.

Ordering the Real Numbers

On the real number line, the real numbers increase from left to right. The lesser of two real numbers is the one farther to the left on a number line. The greater of two real numbers is the one farther to the right on a number line.

Look at the number line in Figure P.7. The integers -4 and -1 are graphed.

FIGURE P. 7
Observe that -4 is to the left of -1 on the number line. This means that -4 is less than -1 .

$$
\begin{array}{ll}
& -4 \text { is less than }-1 \text { because }-4 \text { is to } \\
\text { the left of }-1 \text { on the number line. }
\end{array}
$$

In Figure P.7, we can also observe that -1 is to the right of -4 on the number line. This means that -1 is greater than -4 .

$$
\begin{array}{ll}
-1 \text { is greater than }-4 \text { because }-1 \text { is to } \\
\text { the right of }-4 \text { on the number line. }
\end{array}
$$

The symbols $<$ and $>$ are called inequality symbols. These symbols always point to the lesser of the two real numbers when the inequality statement is true.

$$
\left.\begin{array}{ll}
-4 \text { is less than }-1 . & -4<-1
\end{array} \begin{array}{l}
\text { The symbol points to }-4 \text {, the lesser } \\
\text { number. }
\end{array}\right] \begin{aligned}
& \text { The symbol still points to }-4 \text {, the } \\
& \text { lesser number. }
\end{aligned}
$$

The symbols $<$ and $>$ may be combined with an equal sign, as shown in the following table:

This inequality is true if either the < part or the $=$ part is true.	Symbols	Meaning	Examples	Explanation
	$a \leq b$	a is less than or equal to b.	$\begin{aligned} & 2 \leq 9 \\ & 9 \leq 9 \end{aligned}$	Because $2<9$ Because $9=9$
This inequality is true if either the $>$ part or the $=$ part is true.	$b \geq a$	b is greater than or equal to a.	$\begin{aligned} & 9 \geq 2 \\ & 2 \geq 2 \end{aligned}$	Because $9>2$ Because $2=2$

